Learning When to Classify for Early Text Classification
Date:
I presented the paper “Learning When to Classify for Early Text Classification” in the XVIII Workshop of Intelligent Agents and Systems of the XXII Argentine Congress of Computer Science.
The slides are available here.
Abstract:
The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible.
The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.