UNSL at eRisk 2022: Decision policies with history for early classification

Juan Martín Loyola^{1,3}, Horacio Thompson^{1,2}, Sergio Burdisso^{1,4} and Marcelo Errecalde¹

¹ Universidad Nacional de San Luis (UNSL), Argentina. ² Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. ³ Instituto de Matemática Aplicada San Luis (IMASL), CONICET-UNSL, Argentina. ⁴ Idiap Research Institute, Switzerland

Outline

- Early text classification framework
- Proposed models
- Runs and results:
 - Task 1
 - o Task 2

Early Text Classification Framework

Early Text Classification Framework

- Based on the development of predictive models that can determine the category of a document as soon as possible.
- Find an adequate balance between:
 - precision of the classification
 - o minimum time for a prediction to be reliable.
- It can be conceptualized in two parts:
 - Classification with Partial Information (CPI).
 - Decision of the Moment of Classification (DMC).

Early Text Classification Framework

- CPI → Classification with Partial Information
- DMC → Decision of the Moment of Classification

Early risk detection

- Special case of early text classification.
- We are only concerned with predicting the risk category as early as possible.
- If the current partial input is classified as non-risky, the model continues to accumulate information in case, in the future, the user begins to show risky patterns.
- It is essential to recover as many users at risk as possible as their lives could be in danger.

Proposed Models

Proposed models

- EarlyModel
- SS3
- EARLIEST

Proposed models

We can identify each model with:

- Input representation
- Model used for classification with partial information (CPI)
- Early alert policy (DMC)

Input representation:

- Bag of words
- Latent Dirichlet Allocation (LDA)
- Latent Semantic Analysis (LSA)
- Doc2vec

Models used for classification with partial information:

- Decision trees
- K-nearest neighbors
- Support vector machine (SVM)
- Logistic regression
- Multi-layer perceptron (MLP)
- Random forests
- LSTM
- BERT

Stop criteria (Early alert policies):

- Simple Stop Criterion (SSC)
- Historic Stop Criterion (HSC)
- Learned Decision Tree Stop Criterion (LDTSC)

Simple Stop Criterion (SSC)

Historic Stop Criterion (HSC)

- Similar to the Simple Stop Criterion, without the model output node.
- We observed that the user probability fluctuates as time progress, surpassing the probability threshold sometimes → increasing the number of false positive.
- Add a moving window of last probabilities for each user.
- If all the probabilities surpass the threshold we emit an alarm.

Learned Decision Tree Stop Criterion (LDTSC)

- Train a Decision Tree on a manually label corpus with the moment to stop the input processing.
- Features used:
 - class probability,
 - average and median of the last probabilities,
 - o number of relevant words.

$$decision_u = \begin{cases} 1, & \text{if } score_u > \text{median}(scores) + \gamma \cdot \text{MAD}(scores) \\ 0, & \text{otherwise.} \end{cases}$$

Early alert policy:

$$decision_{u} = \begin{cases} 1, & \text{if } \underline{score_{u}} > \text{median}(scores) + \gamma \cdot \text{MAD}(scores) \\ 0, & \text{otherwise.} \end{cases}$$

Normalization (risk_class_score, non_risk_class_score)

$$decision_u = \begin{cases} 1, & \text{if } score_u > \text{median}(scores) + \gamma \cdot \text{MAD}(scores) \\ 0, & \text{otherwise.} \end{cases}$$

$$scores = \{score_u | u \in \text{Users}\}$$

$$decision_u = \begin{cases} 1, & \text{if } score_u > \text{median}(scores) + \gamma \cdot \underline{\text{MAD}}(scores) \\ 0, & \text{otherwise.} \end{cases}$$
 Median Absolute Deviation

$$decision_u = \begin{cases} 1, & \text{if } score_u > \text{median}(scores) + \gamma \cdot \text{MAD}(scores) \\ 0, & \text{otherwise.} \end{cases}$$
Early alert policy hyper-parameter

Normalization of scores

- Since
 - the decision policy considers the model output for all the users,
 - the users have different posts number,
 - the model output is additive
- The final score of the users with a small number of posts affects the rest of the users.

Normalization of scores:

• N1:
$$softmax(\frac{cv_{positive}}{delay}, \frac{cv_{negative}}{delay})$$

• N2:
$$\frac{cv_{\text{positive}}}{cv_{\text{positive}} + cv_{\text{negative}}}$$

EARLIEST

EARLIEST

Early and Adaptive Recurrent Label ESTimator

EARLIEST

EARLIEST

Component in charge of deciding **EARLIEST** when to stop processing the input Base RNN Controller Discriminator Halt Wait $\pi(S_t)$ **LSTM**(X_t , S_{t-1}) sample action a $\mathbf{D}(S_t)$ if a = Halt $Y_{\text{if }a} = W_{\text{ait}}$ X_t move to next timestep: t = t + 1XLegend Gradient No gradient

t = 0

t = 2

t = 1

t = 3

EARLIEST

Component in charge of classifying the partial input

EARLIEST

The hyper-parameter λ penalizes the delay in the classification while training.

Runs and Results

Task 1: Early Detection of Signs of Pathological Gambling

Task 2: Early Detection of Depression

T1 - Early Detection of Pathological Gambling - Runs

- UNSL#0 (EarlyModel):
 - \circ Representation \longrightarrow bag of words (unigrams of words with tf-idf)
 - \circ Model \rightarrow logistic regression
 - \circ Decision policy \longrightarrow SSC (threshold = 0.7 and min. num. of post = 10)
- UNSL#1 (EarlyModel):
 - \circ Representation \rightarrow bag of words (4-grams of characters with tf-idf)
 - \circ Model \rightarrow SVM
 - \circ Decision policy \rightarrow SSC (threshold = 0.7 and min. num. of post = 10)
- UNSL#2 (EarlyModel):
 - ightharpoonup Representation ightharpoonup tokenizer
 - \circ Model \rightarrow BERT
 - \circ Decision policy \longrightarrow HSC (threshold = 0.7, min. num. of post = 10 and 10 prev. preds)

T1 - Early Detection of Pathological Gambling - Runs

• UNSL#3 (SS3):

 \circ Representation \longrightarrow raw text

 \circ Model \longrightarrow SS3

 \circ Normalization \rightarrow N1

○ Decision policy $\rightarrow \gamma = 2.5$

• UNSL#4 (EARLIEST):

 \circ Representation \longrightarrow doc2vec

 \circ Model \rightarrow LSTM

○ Decision policy $\rightarrow \lambda = 0.0001$

T1 - Early Detection of Pathological Gambling - Results

Team	Run	P	R	F1	$ERDE_5$	$ERDE_{50}$	$latency_{TP}$	speed	$latency weighted\ F1$
UNED-NLP	4	0.809	0.938	0.869	0.020	0.008	3.0	0.992	0.862
SINAI	0	0.425	0.765	0.546	0.015	0.011	1.0	1.000	0.546
SINAI	1	0.575	0.802	0.670	0.015	0.009	1.0	1.000	0.670
BLUE	0	0.260	0.975	0.410	0.015	0.009	1.0	1.000	0.410
UNSL (EarlyModel)	0	0.401	0.951	0.564	0.041	0.008	11.0	0.961	0.542
UNSL (EarlyModel)	1	0.461	0.938	0.618	0.041	0.008	11.0	0.961	0.594
UNSL (EarlyModel)	2	0.398	0.914	0.554	0.041	0.008	12.0	0.957	0.531
UNSL (SS3)	3	0.365	0.864	0.513	0.017	0.009	3.0	0.992	0.509
UNSL (EARLIEST)	4	0.052	0.988	0.100	0.051	0.030	5.0	0.984	0.098

T1 - Early Detection of Pathological Gambling - Results

Team	Run	P	R	F1	$ERDE_5$	$ERDE_{50}$	$latency_{TP}$	speed	$latency weighted\ F1$
UNED-NLP	4	0.809	0.938	0.869	0.020	0.008	3.0	0.992	0.862
SINAI	0	0.425	0.765	0.546	0.015	0.011	1.0	1.000	0.546
SINAI	1	0.575	0.802	0.670	0.015	0.009	1.0	1.000	0.670
BLUE	0	0.260	0.975	0.410	0.015	0.009	1.0	1.000	0.410
UNSL (EarlyModel)	0	0.401	0.951	0.564	0.041	0.008	11.0	0.961	0.542
UNSL (EarlyModel)	1	0.461	0.938	0.618	0.041	0.008	11.0	0.961	0.594
UNSL (EarlyModel)	2	0.398	0.914	0.554	0.041	0.008	12.0	0.957	0.531
UNSL (SS3)	3	0.365	0.864	0.513	0.017	0.009	3.0	0.992	0.509
UNSL (EARLIEST)	4	0.052	0.988	0.100	0.051	0.030	5.0	0.984	0.098

T2 - Early Detection of Depression - Runs

- UNSL#0 (EarlyModel):
 - Representation
- → latent semantic analysis

Model

- → logistic regression
- Decision policy
- \rightarrow LDTSC
- UNSL#1 (EarlyModel):
 - Representation

 \rightarrow bag of words (3-grams of characters with tf-idf)

Model

- \rightarrow SVM
- Decision policy
- \rightarrow SSC (threshold = 0.7 and min. num. of post = 10)

- UNSL#2 (SS3):
 - Representation

 \rightarrow raw text

Model

- \rightarrow SS3
- Normalization
- \rightarrow N1
- Decision policy
- $\rightarrow \gamma = 2.5$

T2 - Early Detection of Depression - Runs

• UNSL#3 (SS3):

 \circ Representation \longrightarrow raw text

 \circ Model \rightarrow SS3

 \circ Normalization \rightarrow N2

○ Decision policy $\rightarrow \gamma = 2$

• UNSL#4 (EARLIEST):

 \circ Representation \longrightarrow doc2vec

 \circ Model \rightarrow LSTM

○ Decision policy $\rightarrow \lambda = 0.0001$

T2 - Early Detection of Self-Harm - Results

Team	Run	P	R	F1	$ERDE_5$	$ERDE_{50}$	$latency_{TP}$	speed	latency- weighted F1
LauSAn	4	0.201	0.724	0.315	0.039	0.033	1.0	1.000	0.315
NLPGroup-IISERB	0	0.682	0.745	0.712	0.055	0.032	9.0	0.969	0.690
SCIR2	3	0.316	0.847	0.460	0.079	0.026	44.0	0.834	0.383
UNSL (EarlyModel)	0	0.161	0.918	0.274	0.079	0.042	14.5	0.947	0.260
UNSL (EarlyModel)) 1	0.310	0.786	0.445	0.078	0.037	12.0	0.957	0.426
UNSL (SS3)	2	0.400	0.755	0.523	0.045	0.026	3.0	0.992	0.519
UNSL (SS3)	3	0.144	0.929	0.249	0.055	0.035	3.0	0.992	0.247
UNSL (EARLIEST)	4	0.080	0.918	0.146	0.099	0.074	5.0	0.984	0.144

T2 - Early Detection of Self-Harm - Results

Team	Run	P	R	F1	$ERDE_5$	$ERDE_{50}$	$latency_{TP}$	speed	latency- weighted F1
LauSAn	4	0.201	0.724	0.315	0.039	0.033	1.0	1.000	0.315
NLPGroup-IISERB	0	0.682	0.745	0.712	0.055	0.032	9.0	0.969	0.690
SCIR2	3	0.316	0.847	0.460	0.079	0.026	44.0	0.834	0.383
UNSL (EarlyModel)	0	0.161	0.918	0.274	0.079	0.042	14.5	0.947	0.260
UNSL (EarlyModel)) 1	0.310	0.786	0.445	0.078	0.037	12.0	0.957	0.426
UNSL (SS3)	2	0.400	0.755	0.523	0.045	0.026	3.0	0.992	0.519
UNSL (SS3)	3	0.144	0.929	0.249	0.055	0.035	3.0	0.992	0.247
UNSL (EARLIEST)	4	0.080	0.918	0.146	0.099	0.074	5.0	0.984	0.144

References

- Loyola, J. M., Errecalde, M. L., Escalante, H. J., & y Gomez, M. M. (2017, October). Learning when to classify for early text classification. In Argentine Congress of Computer Science (pp. 24-34).
 Springer, Cham.
- Loyola, J. M., Burdisso, S., Thompson, H., Cagnina, L. C., & Errecalde, M. (2021, September). UNSL at eRisk 2021: A Comparison of Three Early Alert Policies for Early Risk Detection. In CLEF (Working Notes) (pp. 992-1021).
- Burdisso, S. G., Errecalde, M., & Montes-y-Gómez, M. (2019). A text classification framework for simple and effective early depression detection over social media streams. Expert Systems with Applications, 133, 182-197.
- Hartvigsen, T., Sen, C., Kong, X., & Rundensteiner, E. (2019, July). Adaptive-halting policy network for early classification. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 101-110).

Corpus generation procedure

- Based on posts and comments from Reddit (https://www.reddit.com/).
- Positive cases were obtained from particular subreddits
 - T1: https://www.reddit.com/r/problemgambling/
 - T2: https://www.reddit.com/r/depression
- Negative cases were obtained from general subreddits: sports, jokes, gaming, politics, news, y LifeProTips.
- All users with less than 31 posts or comments, or with an average number of words per post less than 15, were discarded.

T1 - eRisk corpus

- Based on posts and comments from Reddit (https://www.reddit.com/).
- A corpus was supplied which was used for validation.

Corpus	#users			#nosts	#po	sts per	user	#words per post			
	Total	Pos	Neg	#posts	Med	Min	Max	Med	Min	Max	
T1_test	2,079	81	1,998	1,177,590	297	3	2,001	11	0	6,728	
T1_valid	2,348	164	2,184	1,130,799	244	10	2,001	11	1	8,241	
T1_redd_train	1,746	286	1,460	158,924	51	31	1,188	20	1	7,479	
T1_redd_valid	1,746	286	1,460	161,204	53	31	1,337	20	1	3,234	

T2 - eRisk corpus

- Based on posts and comments from Reddit (https://www.reddit.com/).
- A training and validation corpus were provided.

Corpus	#users			#posts	#po:	sts per	user	#words per post			
	Total	Pos	Neg	#posts	Med	Min	Max	Med	Min	Max	
T2_test	1,400	98	1,302	898,326	457.0	6	2,000	12	0	8,009	
T2_train	887	135	752	531,394	321.0	10	2,000	13	1	7,450	
T2_valid	820	79	741	545,188	411.5	10	2,000	13	1	7,280	
T2_redd_train	1,056	499	557	142,059	66.0	31	2,282	21	1	6,792	
T2_redd_valid	1,057	500	557	130,534	61.0	31	2,220	20	1	6,629	

