### UNSL at eRisk 2021:

# A Comparison of Three Early Alert Policies for Early Risk Detection

Juan Martín Loyola<sup>1,3</sup>, Sergio Burdisso<sup>1,2</sup>, Horacio Thompson<sup>1,2</sup>, Leticia Cagnina<sup>1,2</sup> and Marcelo Errecalde<sup>1</sup>

Universidad Nacional de San Luis (UNSL), Argentina.
 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
 Instituto de Matemática Aplicada San Luis (IMASL), CONICET-UNSL, Argentina.







#### Outline

- Early text classification framework
- Proposed models
- Runs and results:
  - Task 1
  - o Task 2



## Early Text Classification Framework

#### Early Text Classification Framework

- Development of predictive models that can determine the category of a document as soon as possible.
- Find an adequate balance between:
  - o precision of the classification
  - o minimum time for a prediction to be reliable.
- It can be conceptualized in two parts:
  - Classification with Partial Information (CPI).
  - Decision of the Moment of Classification (DMC).

#### Early Text Classification Framework

- CPI → Classification with Partial Information
- DMC → Decision of the Moment of Classification



#### Early risk detection

- Special case of early text classification.
- We are only concerned with predicting the risk category as early as possible.
- If the current partial input is classified as non-risky, the model continues to accumulate information in case, in the future, the user begins to show risky patterns.
- It is essential to recover as many users at risk as possible as their lives could be in danger.

# Proposed Models

### Proposed models

- EarlyModel
- SS3
- EARLIEST

#### Proposed models

We can identify each model with:

- Input representation
- Model used for classification with partial information (CPI)
- Early alert policy (DMC)



#### Input representation:

- Bag of words
- Linguistic Inquiry and Word Count (LIWC)
- Latent Dirichlet Allocation (LDA)
- Latent Semantic Analysis (LSA)
- Doc2vec



Models used for classification with partial information:

- Decision trees
- K-nearest neighbors
- Support vector machine (SVM)
- Logistic regression
- Multi-layer perceptron (MLP)
- Random forests
- LSTM
- BERT





















$$decision_u = \begin{cases} 1, & \text{if } score_u > \text{median}(scores) + \gamma \cdot \text{MAD}(scores) \\ 0, & \text{otherwise.} \end{cases}$$



$$decision_u = \begin{cases} 1, & \text{if } score_u > \text{median}(scores) + \gamma \cdot \text{MAD}(scores) \\ 0, & \text{otherwise.} \end{cases}$$
  $scores = \{score_u | u \in \text{Users}\}$ 

$$decision_u = \begin{cases} 1, & \text{if } score_u > \text{median}(scores) + \gamma \cdot \underline{\text{MAD}}(scores) \\ 0, & \text{otherwise.} \end{cases}$$
 Median Absolute Deviation

$$decision_u = \begin{cases} 1, & \text{if } score_u > \text{median}(scores) + \gamma \cdot \text{MAD}(scores) \\ 0, & \text{otherwise.} \end{cases}$$
Early alert policy hyper-parameter

### **EARLIEST**

#### **EARLIEST**



Early and Adaptive Recurrent Label ESTimator



#### **EARLIEST**





#### **EARLIEST**



#### Component in charge of deciding **EARLIEST** when to stop processing the input Base RNN Controller Discriminator Halt Wait $\pi(S_t)$ **LSTM**( $X_t$ , $S_{t-1}$ ) sample action a $\mathbf{D}(S_t)$ if a = Halt $Y_{\text{if }a} = W_{\text{ait}}$ $X_t$ move to next timestep: t = t + 1XLegend Gradient No gradient

t = 0

t = 2

t = 1

t = 3

#### **EARLIEST**

Component in charge of classifying the partial input



#### **EARLIEST**

The hyper-parameter  $\lambda$  penalizes the delay in the classification while training.

### Runs and Results

Task 1: Early Detection of Pathological Gambling

Task 2: Early Detection of Self-Harm

#### T1 - Early Detection of Pathological Gambling - Runs

- UNSL#0 (EarlyModel):
  - $\rightarrow$  Representation  $\rightarrow$  bag of words (unigrams of words with tf-idf)
  - $\circ$  Model  $\rightarrow$  logistic regression
  - $\circ$  Decision policy  $\longrightarrow$  threshold = 0.7 and minimum number of post = 10
- UNSL#1 (EarlyModel):
  - $\circ$  Representation  $\longrightarrow$  doc2vec
  - $\circ$  Model  $\rightarrow$  logistic regression
  - $\circ$  Decision policy  $\rightarrow$  threshold = 0.85 and minimum number of post = 3
- UNSL#2 (EarlyModel):
  - $\circ$  Representation  $\longrightarrow$  bag of words (4-grams of characters with tf-idf)
  - $\circ$  Model  $\rightarrow$  SVM
  - $\circ$  Decision policy  $\rightarrow$  threshold = 0.75 and minimum number of post = 10

#### T1 - Early Detection of Pathological Gambling - Runs

• UNSL#3 (EARLIEST):

 $\circ$  Representation  $\longrightarrow$  doc2vec

 $\circ$  Model  $\rightarrow$  LSTM

○ Decision policy  $\rightarrow \lambda = 0.000001$ 

UNSL#4 (EARLIEST):

 $\circ$  Representation  $\longrightarrow$  doc2vec

 $\circ$  Model  $\rightarrow$  LSTM

○ Decision policy  $\rightarrow \lambda = 0.00001$ 

# T1 - Early Detection of Pathological Gambling - Results

| team name                    | run | P    | R    | F1   | $ERDE_5$ | $ERDE_{50}$ | $latency_{TP}$ | speed | latency-weighted |
|------------------------------|-----|------|------|------|----------|-------------|----------------|-------|------------------|
|                              | id  |      |      |      |          |             |                |       | F1               |
| UNSL (EarlyModel             | ) 0 | .326 | .957 | .487 | .079     | .023        | 11             | .961  | .468             |
| UNSL ( EarlyModel            | ) 1 | .137 | .982 | .241 | .060     | .035        | 4              | .988  | .238             |
| UNSL ( EarlyModel            | ) 2 | .586 | .939 | .721 | .073     | .020        | 11             | .961  | .693             |
| UNSL ( <code>EARLIEST</code> | ) 3 | .084 | .963 | .155 | .066     | .060        | 1              | 1     | .155             |
| $\overline{UNSL}$ ( EARLIEST | ) 4 | .086 | .933 | .157 | .067     | .060        | 1              | 1     | .157             |
| RELAI                        | 0   | .138 | .988 | .243 | .048     | .036        | 1              | 1     | .243             |
| $\operatorname{BLUE}$        | 1   | .157 | .988 | .271 | .054     | .036        | 2              | .996  | .270             |
| UPV-Symanto                  | 0   | .042 | .415 | .077 | .088     | .087        | 1              | 1     | .077             |
| CeDRI                        | 0   | .076 | 1    | .142 | .079     | .060        | 2              | .996  | .141             |
| EFE                          | 2   | .233 | .750 | .356 | .082     | .033        | 11             | .961  | .342             |

Table 2. Decision-based evaluation

# T1 - Early Detection of Pathological Gambling - Results

| team name                              | run | . <i>P</i> | R    | F1   | $ERDE_5$ | $ERDE_{50}$ | $latency_{TP}$ | speed | $\overline{latency\text{-}weighted}$ |
|----------------------------------------|-----|------------|------|------|----------|-------------|----------------|-------|--------------------------------------|
|                                        | id  |            |      |      |          |             |                |       | F1                                   |
| UNSL (EarlyModel                       | ) 0 | .326       | .957 | .487 | .079     | .023        | 11             | .961  | .468                                 |
| UNSL ( EarlyModel                      | ) 1 | .137       | .982 | .241 | .060     | .035        | 4              | .988  | .238                                 |
| UNSL ( EarlyModel                      | ) 2 | .586       | .939 | .721 | .073     | (.020)      | 11             | .961  | .693                                 |
| UNSL ( <code>EARLIEST</code>           | 3   | .084       | .963 | .155 | .066     | .060        | 1              | 1     | .155                                 |
| $UNSL$ ( $\mbox{\scriptsize EARLIEST}$ | 4   | .086       | .933 | .157 | .067     | .060        | 1              | 1     | .157                                 |
| RELAI                                  | 0   | .138       | .988 | .243 | .048     | .036        | 1              | 1     | .243                                 |
| $\operatorname{BLUE}$                  | 1   | .157       | .988 | .271 | .054     | .036        | 2              | .996  | .270                                 |
| <b>UPV-Symanto</b>                     | 0   | .042       | .415 | .077 | .088     | .087        | 1              | 1     | .077                                 |
| CeDRI                                  | 0   | .076       | 1    | .142 | .079     | .060        | 2              | .996  | .141                                 |
| EFE                                    | 2   | .233       | .750 | .356 | .082     | .033        | 11             | .961  | .342                                 |

**Table 2.** Decision-based evaluation

#### T2 - Early Detection of Self-Harm - Runs

UNSL#0 (EarlyModel):

 $\circ$  Representation  $\longrightarrow$  doc2vec

 $\circ$  Model  $\rightarrow$  MLP

 $\circ$  Decision policy  $\rightarrow$  threshold = 0.7 and minimum number of post = 10

UNSL#1 (EARLIEST):

 $\circ$  Representation  $\longrightarrow$  doc2vec

 $\circ$  Model  $\rightarrow$  LSTM

○ Decision policy  $\rightarrow \lambda = 0.000001$ 

• UNSL#2 (EARLIEST):

 $\circ$  Representation  $\longrightarrow$  doc2vec

 $\circ$  Model  $\rightarrow$  LSTM

○ Decision policy  $\rightarrow \lambda = 0.00001$ 

#### T2 - Early Detection of Self-Harm - Runs

• UNSL#3 (SS3):

 $\circ$  Representation  $\longrightarrow$  raw text

 $\sim$  Model  $\rightarrow$  SS3

○ Decision policy  $\rightarrow \gamma = 2$ 

• UNSL#4 (SS3):

 $\circ$  Representation  $\longrightarrow$  raw text

 $\rightarrow$  Model  $\rightarrow$  SS3

○ Decision policy  $\rightarrow \gamma = 2.5$ 

### T2 - Early Detection of Self-Harm - Results

| team name             | run                 | P    | R    | F1   | $ERDE_5$ | $ERDE_{50}$ | $latency_{TP}$ | speed | latency-weighted |
|-----------------------|---------------------|------|------|------|----------|-------------|----------------|-------|------------------|
|                       | $\operatorname{id}$ |      |      |      |          |             |                |       | F1               |
| UNSL (EarlyModel      | 0                   | .336 | .914 | .491 | .125     | .034        | 11             | .961  | .472             |
| UNSL (EARLIEST)       | 1                   | .11  | .987 | .198 | .093     | .092        | 1              | 1.0   | .198             |
| UNSL (EARLIEST)       | 2                   | .129 | .934 | .226 | .098     | .085        | 1              | 1.0   | .226             |
| UNSL (SS3)            | 3                   | .464 | .803 | .588 | .064     | .038        | 3              | .992  | .583             |
| UNSL (SS3)            | 4                   | .532 | .763 | .627 | .064     | .038        | 3              | .992  | .622             |
| NLP-UNED              | 4                   | .453 | .816 | .582 | .088     | .04         | 9              | .969  | .564             |
| Birmingham            | 0                   | .584 | .526 | .554 | .068     | .054        | 2              | .996  | .551             |
| Birmingham            | 2                   | .757 | .349 | .477 | .085     | .07         | 4              | .988  | .472             |
| ${ m EFE}$            | 2                   | .366 | .796 | .501 | .12      | .043        | 12             | .957  | .48              |
| $\operatorname{BLUE}$ | 2                   | .454 | .849 | .592 | .079     | .037        | 7              | .977  | .578             |
| UPV-Symanto           | 1                   |      | .638 | .385 | .059     | .056        | 1              | 1.0   | .385             |

**Table 5.** Decision-based evaluation

### T2 - Early Detection of Self-Harm - Results

| team name             | run                 | P    | R    | F1   | $ERDE_5$ | $ERDE_{50}$ | $latency_{TP}$ | speed | $\overline{latency\text{-}weighted}$ |
|-----------------------|---------------------|------|------|------|----------|-------------|----------------|-------|--------------------------------------|
|                       | $\operatorname{id}$ |      |      |      |          |             |                |       | F1                                   |
| UNSL (EarlyModel      | 0                   | .336 | .914 | .491 | .125     | .034        | 11             | .961  | .472                                 |
| UNSL (EARLIEST)       | 1                   | .11  | .987 | .198 | .093     | .092        | 1              | 1.0   | .198                                 |
| UNSL (EARLIEST)       | 2                   | .129 | .934 | .226 | .098     | .085        | 1              | 1.0   | .226                                 |
| UNSL (SS3)            | 3                   | .464 | .803 | .588 | .064     | .038        | 3              | .992  | .583                                 |
| UNSL (SS3)            | 4                   | .532 | .763 | .627 | .064     | .038        | 3              | .992  | .622                                 |
| NLP-UNED              | 4                   | .453 | .816 | .582 | .088     | .04         | 9              | .969  | .564                                 |
| Birmingham            | 0                   | .584 | .526 | .554 | .068     | .054        | 2              | .996  | .551                                 |
| Birmingham            | 2                   | .757 | .349 | .477 | .085     | .07         | 4              | .988  | .472                                 |
| ${ m EFE}$            | 2                   | .366 | .796 | .501 | .12      | .043        | 12             | .957  | .48                                  |
| $\operatorname{BLUE}$ | 2                   | .454 | .849 | .592 | .079     | .037        | 7              | .977  | .578                                 |
| UPV-Symanto           | 1                   |      | .638 | .385 | .059     | .056        | 1              | 1.0   | .385                                 |

**Table 5.** Decision-based evaluation



#### References

- Loyola, J. M., Errecalde, M. L., Escalante, H. J., & y Gomez, M. M. (2017, October). Learning when to classify for early text classification. In Argentine Congress of Computer Science (pp. 24-34).
   Springer, Cham.
- Burdisso, S. G., Errecalde, M., & Montes-y-Gómez, M. (2019). A text classification framework for simple and effective early depression detection over social media streams. Expert Systems with Applications, 133, 182-197.
- Hartvigsen, T., Sen, C., Kong, X., & Rundensteiner, E. (2019, July). Adaptive-halting policy network for early classification. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 101-110).

# Score and decision policy visualization (EarlyModel)





#### Score and decision policy visualization (EarlyModel)





#### Score and decision policy visualization (EarlyModel)





# Score and decision policy visualization (SS3)





#### Score and decision policy visualization (SS3)





#### Score and decision policy visualization (SS3)





### Score and decision policy visualization (EARLIEST)





### Score and decision policy visualization (EARLIEST)





#### Corpus generation procedure

- Based on posts and comments from Reddit (<a href="https://www.reddit.com/">https://www.reddit.com/</a>).
- Positive cases were obtained from particular subreddits
  - T1: <a href="https://www.reddit.com/r/problemgambling/">https://www.reddit.com/r/problemgambling/</a>
  - T2: <a href="https://www.reddit.com/r/selfharm/">https://www.reddit.com/r/selfharm/</a>
- Negative cases were obtained from general subreddits: sports, jokes, gaming, politics, news, y LifeProTips.
- All users with less than 31 posts or comments, or with an average number of words per post less than 15, were discarded.

#### T1 - eRisk corpus

- Based on posts and comments from Reddit (<a href="https://www.reddit.com/">https://www.reddit.com/</a>).
- No corpus was supplied for training.

| Corpus   | #users |     |      | #posts    | #posts per user #words per post |     |       |     |     | post   |
|----------|--------|-----|------|-----------|---------------------------------|-----|-------|-----|-----|--------|
| Corpus   | Total  | Pos | Neg  | #posts    | Med                             | Min | Max   | Med | Min | Max    |
| T1_test  | 2,348  | 164 | 2184 | 1,130,792 | 244                             | 10  | 2,001 | 12  | 0   | 10,175 |
| T1_train | 726    | 176 | 550  | 71,187    | 54                              | 31  | 740   | 20  | 1   | 4,516  |
| T1_valid | 726    | 176 | 550  | 74,507    | 55                              | 31  | 1,234 | 19  | 1   | 7,479  |



#### T2 - eRisk corpus

- Based on posts and comments from Reddit (<a href="https://www.reddit.com/">https://www.reddit.com/</a>).
- A training and validation corpus were provided.

| Corpus     |        | #users |       | #posts  | #posts per user #words per post |     |       |     |     | post   |
|------------|--------|--------|-------|---------|---------------------------------|-----|-------|-----|-----|--------|
| Corpus     | Total  | Pos    | Neg   | #posts  | Med                             | Min | Max   | Med | Min | Max    |
| T2_test    | 1,448  | 152    | 1296  | 746,098 | 275.5                           | 10  | 1,999 | 12  | 0   | 18,064 |
| T2_train   | 340    | 41     | 299   | 170,698 | 282.0                           | 8   | 1,992 | 10  | 1   | 6,700  |
| T2_valid   | 423    | 104    | 319   | 103,837 | 95.0                            | 9   | 1,990 | 7   | 1   | 2,663  |
| redd_train | 1,051  | 494    | 557   | 118,452 | 61.0                            | 31  | 1,466 | 18  | 1   | 5,971  |
| redd_valid | 1,051  | 494    | 557   | 119,651 | 59.0                            | 31  | 1,781 | 18  | 1   | 4,382  |
| comb_train | 1,391  | 535    | 856   | 289,150 | 73.0                            | 8   | 1,992 | 13  | 1   | 6,700  |
| comb_valid | 1,474  | 598    | 876   | 223,488 | 63.0                            | 9   | 1,990 | 11  | 1   | 4,382  |
| ilab_train | 26,256 | 10319  | 15937 | 259,297 | 5.0                             | 1   | 1,825 | 19  | 1   | 11,933 |



#### Pre-processing of the input

- Convert text to lower case.
- 2. Convert HTML and Unicode codes into their respective symbols.
- 3. Replace links to the web with a token.
- 4. Replace internal reddit links with the name of the subreddit they lead to.
- 5. Delete any character that is not a number or letter.
- 6. Replace numbers with a token.
- 7. Delete new lines, tab, and multiple consecutive white spaces.



# T1 - Overlap between competition corpus and the corpus generated

|           | #       | # users with | # users with | # users with |
|-----------|---------|--------------|--------------|--------------|
|           | # users | >25% overlap | >50% overlap | >75% overlap |
| positives | 164     | 24           | 10           | 2            |
| negatives | 2184    | 2            | 0            | 0            |



# T2 - Overlap between competition corpus and the corpus generated

|           | #       | # users with | # users with | # users with |
|-----------|---------|--------------|--------------|--------------|
|           | # users | >25% overlap | >50% overlap | >75% overlap |
| positives | 152     | 6            | 3            | 0            |
| negatives | 1296    | 0            | 0            | 0            |



# T1 - Separation plot



# T2 - Separation plot



### Elapsed time



(a) Task T1

(b) Task T2

#### Time spent during the feature building stage



(a) EarlyModel



(b) EARLIEST



(c) SS3