Introduction to Machine Learning

Instituto de Matemática Aplicada San Luis Universidad Nacional de San Luis July 13, 2017

- O Juan Martín Loyola
- BS. Computer Science
- O Doctoral Student
- o jmloyola@outlook.com

Disclaimer

- I'm not an expert in Machine Learning.
- I recently started learning Python

Before starting...

Install Python (preferably > 3.6.0)

- O Python https://www.python.org/downloads/
- O Anaconda <u>https://www.continuum.io/downloads</u>

• Requirements:

- O Jupyter / iPython
- O Numpy
- Matplotlib
- Download CIFAR-10 dataset (~165MB)
 - Run the shell script /Notebook/complementary_code/datasets/get_datasets.sh
 - O <u>http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz</u>

Definition

- A field of study that gives computers the ability to learn without being explicitly programmed.
- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Examples

• A handwriting recognition learning problem:

- Task T: recognizing and classifying handwritten words within images
- Performance measure *P*: percent of words correctly classified
- Training experience E: a database of handwritten words with given classifications

• A robot driving learning problem:

- Task T: driving on public four-lane highways using vision sensors
- Performance measure P: average distance traveled before an error (as judged by human overseer)
- Training experience E: a sequence of images and steering commands recorded while observing a human driver

• Disciplines that influence Machine Learning:

- Artificial Intelligence
- Computational complexity theory
- Information theory
- O Philosophy
- Psychology and neurobiology
- Bayesian methods
- Statistics

History

- 1812: Bayes' Theorem
- 1913: Markov Chains
- 1950: Turing's Learning Machine
- O 1951: First Neural Network Machine
- 1952: Machines Playing Checkers
- O 1957: Perceptron
- 1967: Nearest Neighbor
- 1969: Limitations of Neural Networks
- 1970: Automatic Differentiation (Backpropagation)
- 1982: Recurrent Neural Network
- 1989: Reinforcement Learning
- 1995: Random Forest Algorithm
- 1995: Support Vector Machines
- 1997: IBM Deep Blue Beats Kasparov
- 2011: Beating Humans in Jeopardy
- 2016: Beating Humans in Go

_		Ense Breiman 1	embles 994 (Bagging)
			Breiman, 2001 (Random Forests)
190		Boosting	
		and the second second second	(action)
2		Schapire, 1989 (Bo Schapire, 1995 (Ad	aboost)
	Suppor	Schapire, 1989 (Bo Schapire, 1995 (Ad	aboost)
	Suppor apnik, 1963	Schapire, 1989 (Bo Schapire, 1995 (Ad t Vector Machines Corina & Vapnik	aboost)
	Suppor apnik, 1963 Neural	Schapire, 1989 (Bo Schapire, 1995 (Ad t Vector Machines Corina & Vapnik	aboost)
Perceptron	Suppor apnik, 1963 Neural Networks	t Vector Machines Corina & Vapnik	nning

Problems Machine Learning tries to solve

Supervised Learning

- Task of inferring a function from labeled training data.
- Each example is a pair consisting of an input object and a desired output value.
- A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.

Unsupervised Learning

- Task of inferring a function to describe hidden structure from "unlabeled" data.
- Since the examples given to the learner are unlabeled, there is no evaluation of the accuracy of the structure that is output by the relevant algorithm

I2 PyData San Luis

Reinforcement Learning

 Concerned with how agents ought to take actions in an environment so as to maximize some notion of cumulative reward.

13

LEARNING = REPRESENTATION + EVALUATION + OPTIMIZATION

Representation	Evaluation	Optimization			
Instances	Accuracy/Error rate	Combinatorial optimization			
K-nearest neighbor	Precision and recall	Greedy search			
Support vector machines	Squared error	Beam search			
Hyperplanes	Likelihood	Branch-and-bound			
Naive Bayes	Posterior probability	Continuous optimization			
Logistic regression	Information gain	Unconstrained			
Decision trees	K-L divergence	Gradient descent			
Sets of rules	Cost/Utility	Conjugate gradient			
Propositional rules	Margin	Quasi-Newton methods			
Logic programs		Constrained			
Neural networks		Linear programming			
Graphical models		Quadratic programming			
Bayesian networks					
Conditional random fields					

Applications

I'm not a robot

 Google
 RankBrain
 Imágenes
 Noticias
 Vídeos
 Maps
 Más
 Preferencias
 Herramientas

Cerca de 290.000 resultados (0,31 segundos)

RankBrain - Wikipedia

https://en.wikipedia.org/wiki/RankBrain - Traducir esta página

RankBrain is an algorithm learning artificial intelligence system, the use of which by Google was confirmed on 26 October 2015. In 2015, "RankBrain was used ...

FAQ: All about the Google RankBrain algorithm - Search Engine Land searchengineland.com/faq-all-about-the-new-google-rankbrain-al...

Traducir esta página

23 jun. 2016 - Google's using a machine learning technology called RankBrain to help deliver its search results. Here's what's we know about it so far.

Google: RankBrain | Search Engine Land

searchengineland.com/library/google/google-rankbrain 🔻 Traducir esta página

RankBrain is a machine-learning artificial intelligence system that helps Google process some of its search results, in particular rare or one-of-a-kind queries.

Applications

Customers who bought this item also bought

<

Philip J. Romero

\$34.95 **vprime**

Paperback

What Hedge Funds Really Python for Finance: Do: An Introduction to Portfolio Management Yves Hilpisch ******* 29 *********** 28 Paperback \$36.97 **Jprime**

Learning From Data > Yaser S. Abu-Mostafa ******* 139 Hardcover 17 offers from \$23.94

Pattern Recognition and Machine Learning (Information Science... > Christopher M. Bishop Hardcover \$67.80 **√prime**

Artificial Intelligence: A Modern Approach (3rd Edition) Stuart Russell ********* 178 Hardcover \$155.05 **vprime**

The Elements of Statistical

Learning: Data Mining,

Inference, and...

#1 Best Seller (in

Bioinformatics

Hardcover \$53.46

Trevor Hastie

Deep Learning (Adaptive **Computation and Machine** Learning series) > Ian Goodfellow Hardcover \$72.00 **vprime**

Yves Hipisch Analyze Big Financial Data

Applications

And many more...

- Prediction of credit-worthy applicants.
- Detection of credit card fraud.
- Recognition of handwritten digit and letter at the post office.
- Selecting relevant ads to show.
- Finding "People You Might Know" in Facebook (friend suggestions).
- Knowledge tracing and dropout detection for online courses.
- Playing chess, go and jeopardy against top players.
- Self-driving car.
- Recommendation systems (Netflix, YouTube).

Image Classification Problem

The intent of the classification process is to categorize all pixels in a digital image into one of several classes.

Image Classification Challenges

Supervised Learning Framework

Nearest Neighbor Classifier

Distance Metrics

O L1 (Manhattan) distance.

$$l_1(I_1, I_2) = \sum_p \left| I_1^p - I_2^p \right|$$

• L2 (Euclidean) distance.

$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

CIFAR-10 Dataset

10 labels 0

50000 training images 0

10000 test images 0

airplane			×	*	1	2	18		and the second
automobile				-	No.			-	*
bird		5			4	1	-	1	4
cat			65		1e		A.	C.	1
deer	No Y	1	R	1	Y	Y	1	-	
dog	376 d	-		1			12	1	N
frog	.		<	7		and the	St.		Stat
horse	Mar. Ar		3	P		1	d ₀	Ser.	1 ^e
ship		1 and	~	144	-	2	100	-	-
truck							1	2.20	dien.

Supervised Learning Framework

Image Classification Assignment

https://github.com/PyDataSanLuis/Encuentros

Frameworks

- O Scikit-learn http://scikit-learn.org/stable/
- O WEKA http://www.cs.waikato.ac.nz/ml/weka/
- TensorFlow https://www.tensorflow.org/
- O Theano http://deeplearning.net/software/theano/
- O PyMC3 http://pymc-devs.github.io/pymc3/
- R packages:
 - O nnet
 - o randomForest
 - o caret
 - O kernlab
 - O tree

Further Reading

- "Machine Learning". Online Course in Coursera from Andrew Ng. https://www.coursera.org/learn/machine-learning
- "Convolutional Neural Networks for Visual Recognition". Stanford's Course from Fei-Fei Li. <u>http://cs231n.github.io/</u>
- "Machine Learning". Book from Tom Mitchell (1997).
- "Pattern Recognition and Machine Learning". Book from Michael Bishop (2006).
- "The Elements of Statistical Learning: Data Mining, Inference, and Prediction". Book from Trevor Hastie, Robert Tibshirani and Jerome Friedman (2009).

Questions?

